Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells
نویسندگان
چکیده
The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a 'decommissioning' phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages.
منابع مشابه
Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila
Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can ded...
متن کاملThe Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of synaptonemal complex proteins in germline stem cells.
FBF-1 and FBF-2 (collectively FBF) are two nearly identical Puf-domain RNA-binding proteins that regulate the switch from mitosis to meiosis in the C. elegans germline. In germline stem cells, FBF prevents premature meiotic entry by inhibiting the expression of meiotic regulators, such as the RNA-binding protein GLD-1. Here, we demonstrate that FBF also directly inhibits the expression of struc...
متن کاملExpression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development.
There is an increasing interest in the role of RNA-binding proteins during neural development. Mouse-Musashi-1 (m-Msi-1) is a mouse neural RNA-binding protein with sequence similarity to Drosophila musashi (d-msi), which is essential for neural development. m-Msi-1 is highly enriched in neural precursor cells that are capable of generating both neurons and glia during embryonic CNS development....
متن کاملDrosophila Rbp6 Is an Orthologue of Vertebrate Msi-1 and Msi-2, but Does Not Function Redundantly with dMsi to Regulate Germline Stem Cell Behaviour
The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell behaviour. Here we have identified a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 144 شماره
صفحات -
تاریخ انتشار 2017